Introduction to Coal Bed Methane August 27, 2003

ALL Consulting

"Technology Integrators for Government and Industry"

www.ALL-LLC.com

Coal Bed Methane: What is it? Where is it?

Coal Basins and CBM In-place Reserves

"Technology Integrators for Government and Industry"

www.ALL-LLC.com

Outcrop Geology and Tertiary Coals of the Powder River Basin

Environments of Coal Deposition

Evolution of CBM

Evolution of Expelled Fluids Related to Coal Rank

Coal Fluids and Depth

Coal Bed Methane: How Do You Get it Out?

Typical Hard Coal Completions

Cherokee Basin (KS)

Arkoma Basin (OK)

Typical CBM Completion

(Powder River Basin)

Coal Bed Methane Production Powder River Basin

SOURCE: ALL Consulting

CBM Production Characteristics

Methane is held in place by reservoir water pressure.

To produce methane, water is drawn off.

CBM Drainage and Drainage Control

On-Lease and Off-Lease Drainage

Hydraulic Barrier to Control Drainage

Water Management

CBM production can cause de-watering of nearby water wells or springs. These impacts will need to be remediated by the CBM operator.

Natural Gas Production Characteristics: Conventional Reservoir vs CBM

Time

CBM Production

Conventional Gas

CBM Drilling and Completion Technology Options

Coal Depths and CBM

In the Powder River Basin, coals range in depths to below 2500' but cleat reduces with depth and the majority of CBM is produced at shallower depths. At the same time, many coals outcrop at the surface but many shallow coals have undergone burning and most have expelled their methane.

CBM Basins and Maximum Producing Depth

Well Depth

- < 250
- 251 500
- 501 1000
- 1001 1500
- > 1500

Com	parison	of Pro	ducing	CBM	Basins	in the	Rocky	y Mo	untain	Region
			σ				J			0

Basin	San Juan	Raton	Uinta	Powder River
State Location	NM, CO	NM, CO	ហ	WY, MT
Drilling Method	Air Percussion	Air Percussion	Air Percussion	Air-Water
Completion Methods	Cased Hole Perforate/Multistage	Cased Hole Perforate/Multistage N_2 Foam/Sand	Cased Hole Perforate/Multistage X-Link/Sand	Open-hole Under-ream
Producing Wells	2,550	694	558	10,358
Primary Water Disposal Methods	Injection	Deep Injection	Deep Injection	Surface Discharge, Beneficial Use
Water Lift Method	Rod Pump	Progressive Cavity and Rod Pump	Rod Pump	Electric Pump and Progressive Cavity
Average water Production per well	25 Bbl/day	266 Bbl/day	215 Bbl/Day	400 Bbl/day
Coal Rank	Sub-bituminous	high-volatile bituminous	high-volatile bituminous	Sub-bituminous
Well Depth (feet)	550-4000	400-4000	2000-7000	200-2500
Net Coal Thickness	20-80 feet	10-40 feet		75 feet
Gas Content	350-450 scf/ton	50-400 scf/ton	250-400 scf/ton	50 scf/ton
Well Spacing	320-160 acres	160 acres	160 acres	80 acres
Average Well Cost	\$275,000	\$330,000	\$375,000	\$75,000
Average Well Reserves	10 Bcf	1.8 Bcf	1.5 Bcf	0.4 Bcf
Average Well Gas Production Rate	800 Mscf/day	300 Mscf/day	625 Mscf/day	180 Mscf/day

Sources: PTTC Rockies 2000, GTI 2000, EPA 2002, USGS 2000, CO, NM, WY, MT Oil and Gas Commissions, Williams 2001,

CBM Produced Water: Management Options

CBM Wells and Water Wells in the Powder River Basin

www.ALL-LLC.com

CBM and Water Management

CBM and Water Management

EXHIBIT 22 - GROUNDWATER QUALITY FOR THE MONTANA PORTION OF THE POWDER RIVER BASIN

Selected groundwater quality data collected from water supply wells located throughout Montana PRB

	JUDITH RIVER FORMATION		HELL CREEK / FOX HILLS FORMATION		Fort Union Formation		QUATERNARY Alluvium	
County	Avg. TDS (mg/L)	Avg. SAR	Avg. TDS (mg/L)	Avg. SAR	Avg. TDS (mg/L)	Avg. SAR	Avg. TDS (mg/L)	Avg. SAR
Big Horn	936	54	1440	14	1658	8	2118	5
Rosebud	2465	31	1376	35	1595	16	1516	9
Powder River	No data	No data	890	35	1882	15	2783	5
Custer	No data	No data	896	37	1810	31	1665	8
Treasure	2312	64	1985	56	1782	32	2437	10
Weighted Average	2100	42	1148	37	1892	18	2014	7

Note: Avg. TDS = Average Total Dissolved Solids, Avg. SAR = Average Sodium Adsorption Ratio

A _{NALYTE}	NATIONAL DRINKING WATER STANDARDS (primary unless noted)	MT. WATER OUALITY STDS. FOR LIVESTOCK PPM (MSU 2001)	CX RANCH Average (MDEQ, 2000)	
TDS mg/L	500	10,000	1,400	
	(secondary)			1
SAR			47	
Sodium mg/L			558	1
Ammonia, Total mg/L			2.0	A
Chloride mg/L	250		19	
Ũ	(secondary)			
Fluoride mg/L	2.0 (secondary)	2	2.5	
Sulfate mg/L	250			1
Aluminum,	(secondary) 0.05 to 0.2	5	0.05	E.
total mg/L	(secondary)	0.2	0.001	1
Arsenic mg/L	0.05	0.2	0.001	
Barlum mg/L	2.0		0.0005	
Denen me /	0.004	5	0.0005	
Boron mg/L	0.005	<u> </u>	0.07	1
Chromium mg/L	0.005	0.03		
Copper mg/L	0.1 1.0	0.5	0.001	1
Loadma		0.05	0.002	1
Iron, dissolved mg/I	0.015	0.05	0.002	94-94 21-04 21-04
Iron_total_mg/L			0.125	
Manganese mg/I	0.05		0.01	1
Mercury mg/L	0.002	0.1	0.01	
Selenium mg/I	0.05	0.5		+3
Strontium mg/L	0.05	0.5	0.43	1
Radium mg/L	5 pCi/L		0.2	1.5
Vanadium mg/L		0.1		-
Zinc mg/L	5	24		
<u></u> ,	(secondary)			and the second

CBM and Water Management

CBM produced water from Montana shows some exceedances of drinking and livestock standards. Total Dissolved Solids (TDS) is exceeded for humans but is acceptable for livestock in the state of Montana. Fluoride is exceeded for both humans and livestock.

The Sodium Adsorption Ratio (SAR) is important as a limiting factor for soil condition and sodium is a limiting factor for plant growth. Both constituents limit the use of this particular water for irrigation although water management can mitigate deleterious effects.

CBM and Water Management

CBM Water Handling Options and Costs

\$1.00/Bbl

Key

Deep Injection

Hauling

Surface Discharge

Treatment Processes

- Reverse Osmosis (RO)
- Electrodialysis Reversal (EDR)
- Ion Exchange
- Freeze Thaw Evaporation
- Artificial Wetlands
- Land-Based Wastewater Treatment
- Emerging Technologies
 - Capacitive Desalination (CDT or EWP)
 - Rapid Spray Distillation

CDT Technology: a New Solution

- "Capacitive Deionization Technology™"
 - Invented and patented by Lawrence
 Livermore National Laboratory
 - \$40+ Million DOE investment
 - 10 years in development
 - Currently being developed commercially under license by CDT Systems, Inc.
- Operating Principle Flow Through Capacitor
 - Liquid flows between high surface area electrode pairs having a potential difference of 1.3 vdc.
 - Ions and other charged particles are attracted to and held on the electrode of opposite charge for later release into a rinse stream.

gatively charged ions (ani Chloride (Cl) Nitrate (NO₃) Silica (SiO₂)

CBM Development: An Attractive Component of America's Energy Mix

U.S. Natural Gas Production, Consumption, and Imports, 1970 - 2020 (trillion cubic feet)

