Bakken Horizontal Best Practices Review

September 2005

Landmark ©2004 Confidential. All Rights Reserved.

SPE 90697

Improved Horizontal Well Stimulations in the Bakken Formation, Williston Basin Montana

Charles Wiley Mike Eberhard Bob Barree Tom Lantz Lyco Energy Corporation Halliburton Energy Services Barree & Associates Landmark

SPE Presentation October 2004 Denver, Colorado

- Area Overview and Geology
- Reservoir Modeling & Well Performance
- Evolution of Well Construction
- Evolution of Completion & Frac Design

Early Challenges:

- Can horizontal wells provide economic uplift for development?
- Is stimulation required for success?
- Can laterals be effectively stimulated?
- What is effective drainage area for low K reservoir?

Short Answers:

- Yes
- Yes
- Yes
- More than you would think

Sleeping Giant Bakken Play

Area Overview & Geology

Middle Bakken Geologic Summary

- Reservoir rock is a dolomite, slightly shaly, minor calcite and quartz grains
- Consistent lateral extent and uniform vertical stratigraphy
- Lateral gradation to siltstones and sandstones
- Sourced by organic-rich shales above and below
- Stratigraphically trapped by porosity pinchout, primarily to NE and SW
- Dominantly matrix porosity system with minor fracturing

Bakken Reservoir Properties

- Net Thickness: 6 15 ft
- Porosity: 8 12%
- Permeability: 0.05 0.5 md
- $K_v/K_h = 0.1$
- Water Sat.: 15 25%
- Oil Gravity: 42 API
 GOR: 500 scf/stb

Type Log - Bakken

Landmark ©2004 Confidential. All Rights Reserved.

Structure Map – Top of Bakken Shale

Landmark ©2004 Confidential. All Rights Reserved

Modeling Results

Initial Reservoir Modeling

- Objective: Define potential benefit of horizontal completion
- History match performance of vertical Bakken producers – using reservoir parameters from logs, cores and well tests
- Use history matched reservoir model for mechanistic study to determine:
 - Productivity uplift from horizontal completions
 - Optimal orientation of laterals
 - Benefit of stimulation in lateral section
 - Estimated effective drainage area

Vertical Well Estimated Ultimate Recovery

Horizontal Well Simulation Input Parameters

- 3-4 independent fractures totaling 2,000 ft.
- 3,000 ft horizontal lateral.
- Drainage area
 160, 240, & 320 acres
- Permeability
 - 0.165 md
 - 0.330 md
 - 0.660 md
- Lateral Orientation Longitudinal vs Transverse fracture

Horizontal Well Simulation Estimated Ultimate Recovery (240 & 320 Acres)

Cumulative Producing Time, days

Frac Design Simulation

- <u>Study fracture growth character</u>
 - estimate proppant placement in zone
 - height growth
 - perforating effects
- <u>Study frac job design</u> –
 determine effect of proppant type & concentration
 determine effect of job parameters

Fracture Simulation

Landmark I A Halliburton Company

Key Modeling Conclusions

- <u>Hydraulic fracturing</u> needed due to low perm, low K_v/K_h, limited natural fracturing
- Fracture Orientation longitudinal vs transverse fracture growth
 - Simulation shows negligible reserve differences
 - Cost effective fracture placement more likely with single stage longitudinal frac

Key Modeling Conclusions

- <u>Maximize stimulated length</u> needed to improve productivity and drainage effectiveness
- <u>Establish Uniform Spacing</u> create well design that allows for consistent downspacing if justified

Well Construction & Completion

Current Best Practices Basic Well Design

- Drill Vertical & Curve, Land In-Zone w/ No Pilot Hole.
- Drill Lateral Along Maximum Principal Stress Azimuth to Facilitate Longitudinal Hydraulic Fracture.
- Drill Lateral to Maximum Length Allowable Per Spacing.
- Run Uncemented Pre-Perforated Liner to Toe to Permit Clean-out & Other Re-Entry.
- Fracture Stimulate w/ Low Loading Polymer and Large Volume of Sand Proppant. Use Diversion Techniques.

Short Lateral

Short laterals are 4,000' in length

Single 640 acre Section Spacing

Landmark ©2004 Confidential. All Rights Reserved

Lateral length of +/- 9000'

Double section -1280 acre spacing

Landmark ©2004 Confidential. All Rights Reserved

Multi-lateral Uncemented Liner

Single or Double Section Development

Multi-lateral Open Hole

Single or Double Section Development

Well Types

Landmark A Halliburton Company

Landmark ©2004 Confidential. All Rights Reserved.

Early Completion Design

3200 feet

Landmark T A Halliburton Company

Heel

Landmark ©2004 Confidential. All Rights Reserved

Why didn't the heel treat?

 Drilling damage in the heel section from fines and extended exposure

-Or

 Combination of damage in heel and lower pore pressure in toe cause toe to preferentially treat

Why an Uncemented Liner?

- Problems with open hole fracs
 - Frac the heel only in open hole fracs
 - By using perforated casing able to divert the frac and treat the entire wellbore
 - SpectraScan tracer logs indicate improvement with this method
- Ability to easily re-enter wells
 - Cleanouts
 - Medium lateral production increased from 175 bopd before cleanout to 691 after
 - Re-frac ability to retreat poorly treated zones
 - Initial refrac treatment increased from 30 bopd before refrac to 190 after

Noncemented Liner Completion

Evolution of Fracture Treatments

- Fluids Tried
 - Borate, Gelled Oil, CMHPG
- Proppants Tried
 - AcFrac Black (resin coated sand)
 - VersaProp (ceramic)
 - Sand

 Multistage jobs with ball sealers and high ppg sand slugs

Why Sand at 10,000' TVD?

Frac is longitudinal Only ~20' high Fluid flow path through sand is short Increased perf spacing

StimLab Predict-K predicts very little difference in production with different proppants.

Landmark 1 A Halliburton Company

Landmark ©2004 Confidential. All Rights Reserved

Multi-Stage Frac Design

Landmark ©2004 Confidential. All Rights Reserved.

Landmark A Halliburton Company

Tracer Log -Noncemented, Preperforated Liner

Start of noncemented liner

Normalized Production Results

	Average of	Average of	
	MaxMo/1000'	6MoProd/1000'	Units
Current Comp	2,015	10,985	Bbl
Early Comp	1,818	8,517	Bbl
Operator A	1,721	5,848	Bbl
Operator B	1,590		Bbl
Operator C	1,396	5,730	Bbl
Operator D	1,157	4,993	Bbl

Landmark A Halliburton Company

Normalized Production Results – Updated – April, 2005

	Average of	Average of	
	6MoCum/1000'	12MoCum/1000'	Units
Current Comp	9,897	17,358	Bbl
Early Comp	8,517	14,323	Bbl
Operator A	6,881	11,442	Bbl
Operator B	7,351	12,806	Bbl
Operator C	5,627	9,457	Bbl
Operator D	5,099	8,997	Bbl

Landmark 1 A Halliburton Company

Well Performance Comparison

Cum Oil Vs Time

Cemented Short Lateral: 3034' Re-Frac of Original Well w/ Current Approach

Landmark 1 A Halliburton Company

Further Refinements

- Stimulation Design
 - Increase number of stages & diversion
 - Continue efforts to facilitate frac cleanup
- North Dakota Development
 - Lodgepole Fm integrity favors isolation of curve section
 - Apparent lower reservoir quality places increased emphasis on completion efficiency

Conclusions

- Maximum stimulated lateral length is primary factor in well productivity
- Positive diversion techniques improve fracture coverage
- Noncemented, perforated liners allow effective diversion and treatment of long lateral sections
- Both longitudinal and transverse fractures are created along the lateral length
- Tendency of the lateral to frac back from toe to heel has been consistently observed
- Refracturing of early wells has improved lateral coverage, well production and total recovery

Questions?

