Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

Instructor

KC Oren – Horizontal Solutions International – VP, Sales and Marketing – Northern US

Lecture Agenda – Morning Session – 8:00am to 12:00pm

Introduction of Presenters – 5 minutes

Review Course Agenda – 5 minutes

Acknowledgement of Contributors – 5 minutes

Part I – Overview of the Trade-Offs – 90 minutes (8:15am – 9:45am)

Some companies are better than others in drilling horizontal wells – why?

- Company drivers
 - Find, develop, produce
 - Find, prove, sell
 - Buy, produce
 - Public vs. private
- Departmental goals – geosciences, drilling, production
 - Drivers
 - Incentives
 - Department v. entire asset team
- Individual drivers – geologist, geophysicist, petrophysicist, drilling engineer, production engineer, company management, others
 - Personas/personal motivation
 - Incentives – individual v. departmental v. asset team v. corporate
 - Is your service company totally aligned – yes or no?

The Great Train Wreck – an example of what can go wrong when the team is not pulling together

- An “Agony of Defeat” case study – quickly tell the GTW story all the way through
- Replay the GTW highlighting of key elements to be reviewed in greater detail (to be covered later in Part II)
 - Key factors
 - Well control
 - High-DLS BHAs
 - Understanding uncertainty (when landing a horizontal well and in general)
 - Introducing TSP (true stratigraphic position) modeling
 - Personas and communications
Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

Break – 15 minutes

Part II – Identifying and Understanding the Trade-Offs – 90 minutes (10:00am – 11:30am)

Consider the benefits of working as a team – how to avoid the “Agony of Defeat”?

- Working towards a common end-goal using a unified team approach
 - Who, when, where and why?
 - Nomenclature and key elements across the team
 - Learn about and get to know the drilling world

Detailed review a few of key factors that influencing the “perfect” horizontal well

- “Well control” challenges
 - What is well control? (be careful: a different thing in the drilling operations world)
 - Pilot hole or no pilot hole – *that is the $1MM question?*
 - Good … or Great when it comes to “science” data
 - Seismic data or offset well information
 - the “plan” vs. reality (Murphy’s Law)
 - Introducing DWOP

- Planning a Horizontal Well
 - Basic 2D well profile
 - Key elements of a well plan
 - Up-dip or down-dip? … that is the question!
 - Alternatives including 3D designs
 - Well avoidance/Anti-collision considerations
 - Nudged for offset wells/pad drilling
 - Fish hook design
 - Formation strike and wellbore orientation

- Drilling the Well using High-Dog Leg Severity (DLS) BHAs
 - Defining Dog Leg and DLS
 - What are the components of a Bottom Hole Assembly (BHA)
 - Design and tendencies of HDLS BHAs
 - BHA response to formation heterogeneity
 - BHA selection for the curve
 - BHA’s in the lateral

- Understanding wellbore position uncertainty (when landing a horizontal well and in general)
 - Survey measurement best practices and (in)accuracies of various MWD systems
 - Survey calculation methods
 - Review of several common methods
 - Impact of course length interval
 - Testing the models: working through an example
Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

- Understanding wellbore position uncertainty (continued)
 - Reviewing the importance of using the right model for a given situation
 - Precise wellbore positioning and the “Ellipse of Uncertainty”
 - systematic error
 - random error
 - quantifying magnitude of error

Part III – Geo-navigation, Geosteering and Effective Communication – 30 minutes (11:30am – noon)

Uncertainty Mitigation – managing the inevitable

- Beating “Murphy”
 - Horizontal well programming ... that plans for the unexpected
 - Every well must begin with DWOP – Drilling the Well on Paper ... FIRST!
 - Understanding the geo-prognosis for smart contingency planning
 - Pre-spud meetings – critical first step in execution of the plan

- Introducing active TSP (true stratigraphic position) modeling
 - Trumps all other methods
 - TSP modeling overcomes all noted errors for timely, accurate decision support
 - What does your targeted interval warrant for monitoring
 - Time is of the essence
 - Informed, timely decision support
 - Geo-navigation vs. Geosteering
 - Wellbore position – geologically vs. 3D space (in your subsurface model)
 - Proactive vs. Reactive – what difference does it make
 - Updating your geo-model – when ... and will it really matter?
 - Re-Introduce George Gunn for Part IV session (TSP modeling “deep dive”)

- Horizontal well targeting
 - Updating the plan (i.e. the target line)
 - Does it really matter?
 - The trade-offs in defining a new target
 - Porpoisuosity
 - Lateral extent
 - Drilling problems
 - Torque and drag
 - Fatigue
 - Hole cleaning
 - Completions and the life-time well performance
Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

- Horizontal well targeting (continued)
 - Targeting best practices
 - Follow the plan – *which plan?*
 - “3D Point in space” targeting
 - Targeting best practice
 - Vector based targeting
 - VS₀/TVD @ inclination approach
 - Landing a well – using an airplane landing video to illustrate

Introduce lunch-time assignment – 10 minutes

- Questions to ponder during lunch hour
 - Vocabulary review using a horizontal well plan graphic
 - Survey calculation methods – when to use which
 - Systematic versus Random error and explain sources (and mitigation) of each

Lunch – 12:10 to 1:10pm

- Buffet Lunch and opportunity to meet classmates and network, and to discuss lunch-time assignments and morning’s lessons
Lecture Agenda – Afternoon Session – 1:10pm to 5:00pm

Morning Session recap – 15 to 20 minutes

- Review assignment
- Q&A discussions from morning session

PM Kick-Off: Re-introduce presenter(s) and review afternoon course agenda – 10 minutes

Part IV - Geosteering Horizontal Wells – 75 minutes (1:30pm – 2:45pm)

Making a case for geosteering - The questions, the goals and the benefits

- Time out! First, a reality check – questions you should be asking yourself?
 - What can be learned from a horizontal wellbore about the geology in an area that we don’t already know from vertical wells and seismic data?
 - How will geosteering a horizontal wellbore save drilling dollars?
 - Are there “sweet spots” we should be targeting?
 - How can geosteering horizontal wellbores improve the performance of the next wells?
 - How do we use the geologic interpretation of data from a horizontal well to improve our completions?

The goals of geosteering

- Increase exposure of wellbore to the pay zone
- Minimize slide times and reduce doglegs
- Learn as much as possible about your geology
- Optimize:
 - Human Resources
 - Time and Money
 - Knowledge
 - Production

The benefits of Geosteering

- More than simply staying in zone: it’s about understanding the geology
- TSP Modeling shows you all the warts:
 - Details that can be seen in no other way
 - Small faults, anomalous dips, stratigraphic variations
- Every area has its own unique characteristics that can be planned for ... if they are known
Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

- Identifying karsted and faulted areas
- The only way to identify “sweet spots” is to know which section each well drilled
Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

Focus on Stratigraphy – TSP modeling

- What exactly is True Stratigraphic Position (TSP) modeling
 - Relating TSP in a 2D graphical domain
 - Translating stratigraphic datum in a log correlation perspective/view
 - Type curve(s) vs. the active MWD data curve(s)
 - Defining apparent formation dip and TSP
- The four keys needed to navigate a well successfully
 1. Measured subsurface position of the drilling assembly
 2. Formation dip
 3. Fault identification
 4. Stratigraphic position of the bit

The elements for good geosteering decision support

- Log correlation is the most fundamental skill of the geologist
- Correlation is the only way to determine stratigraphic position
- Correlation must be performed in a stratigraphic setting
- Successfully applying the four keys support timely, more accurate geosteering decisions

Case Studies – detailed review of several examples

- **Woodford Example** – complex structure
 - “Believe in average dip from your well control, but”
- **Marcellus Shale Example #1**
 - “Don’t be trapped by preconceptions”
- **Montney Formation Example**
 - “Do not over-react”
- **Barnett Shale Example**
 - “Leverage all of your data whenever possible ...”
- **Marcellus Shale Example #2**
 - “Follow the data ... don’t force it! And ... expect to be surprised.”

Break – 15 minutes
Part V - Geosteering Horizontal Wells (continued) – 45 minutes (3:00pm – 3:45pm)

Basic Geosteering Principles

• Do not over react
• Believe average dip BUT don’t expect to see it!
• Do not be trapped by preconceptions
• Use all of your data whenever possible
• Drill to a target line NOT to a point in space (referencing earlier discussion in the morning)

Recommended Best Practices for geosteering

• Establish your own geosteering best practices
 o Efficiency and consistency
 o Standard software & workflows
 o Streamlined training
 o Consistent analysis and evaluations
• Continuing improvement
 o Improve geosteering decisions
 o Save money
 o Improve performance and return on investment
 o Assure safety

Communications

• Personas
• Departmental incentives
• Company drivers
• Include service company personnel

How to be successful – starts with the TEAM

• Experienced senior geologists first
• Real time personnel – 24/7 surveillance and support
• Streamlined integrated communication standards
 o Senior geologists
 o Real-time personnel
 o Customer operations staff
 o Directional drilling team
 o Other service company contractors as needed
• Collaborative geosteering software (a key enabler)
Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

Geosteering software solutions

- LatNavNet Well Data Management System
 - Centralized enterprise level geosteering database
 - Integrated data hub
 - Team collaboration system
 - TrueTime interpretation sharing
- LatNavNet Geosteering Software
 - Portable for use in any location
 - Streamlined for rapid geosteering interpretation
 - High resolution reports designed for rapid and clear communication of decision critical geosteering results

Best Practices Workflows

- Real-Time Operations Center Support
 - What is “real-time” really? Introducing the concept of TrueTime™
 - Well setup, initial data formats and templates
 - LWD/MWD data QC and uploads with every survey
 - 24/7 drilling data monitoring to support geosteering decisions
 - Report anomalies as observed to the team
 - Push data out to the team
 - Build well clones for parallel interpretations, different working scenarios
- Senior Geoscientist – critical skills
 - Experience in area, with targeted formation(s)
 - Interpretation expertise, correlation skills
 - Accurate geosteering resolution history
 - Drilling/field experience
 - Communication experience
 - Team collaboration across all disciplines
 - Solid relationships with key stakeholders
 - Trust IN the team, trusted BY the team

Levels of Services required

- Fit for purpose solutions
 - Scalable services
 - Risk based
 - Complexity of play
 - Size of targeted zone
Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

- Drilling rates
- Maturity of play
Navigating the Bumps in the Road: The Trade-offs in Drilling the “Perfect Horizontal Well”™

• Fit for purpose solutions (continued)
 o Leverage the right tools to fit the project
 o Err in favor of over subscribing, then scale back as experience proves out
 o Scale back slowly with contingencies in place for quick recovery
• Building on the basics – scale up as necessary
 1. Mudlogging
 2. 24/7 remote monitoring
 3. Expert QC and automatic data management
 4. FirstLook™ geosteering interpretation
 5. Tiered geosteering analysis – more eyes when required
 6. Senior interpretation
 7. Team review
 8. Active guidance by experts

Part VI – Using Geosteering Software – 60 minutes (3:45pm – 4:45pm)

Log correlation for geosteering applications

• Correlation software options
 o Sliding logs
 o Spreadsheet correlation
 o Geosteering software – commercial
 o In-house solutions
• Drilling and offset well data requirements and data management
 o Setting up a correlation
 ▪ LAS files
 ▪ Directional surveys
 o Active well data requirements
 ▪ LAS files
 ▪ Directional surveys
 ▪ Other data
 o Data management for interpretation and archival
 ▪ Locally
 ▪ Cloud-based
 ▪ Auditing
• Geosteering software results
 o Input data discussion
 o Results discussion
 o Graphical representation
 o Target description
 o Target line
Demonstration of a software for geosteering (optional)

- Working on the cloud
 - Operations center-based well set-up
 - Ops center data management and QC
 - Collaboration using a single data set
- How to correlate
 - Stretch and squeeze
 - Using apparent dip to reconcile a fit
 - Introducing faults
- The report
 - Input data review
 - Cross section views
 - Vertical Section plane view
 - Measured depth panel
 - Target lines

Conclusions and Wrap-up – 15 minutes (4:45pm – 5:00pm)